V = 2654.6 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ 

T = 173 (2) K 0.50 × 0.40 × 0.20 mm

 $R_{\rm int} = 0.026$ 

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Benzyl 2-{[2-(*tert*-butoxycarbonylamino)-4-methylpentanoyl]methylamino}-4-methylpentanoate

# Xiao-Jian Liao,<sup>a</sup> Wen-Jie Xu,<sup>b</sup> Shi-Hai Xu<sup>a</sup>\* and Fang-Fang Dong<sup>a</sup>

<sup>a</sup>Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China, and <sup>b</sup>Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China Correspondence e-mail: txush@jnu.edu.cn

Received 25 May 2007; accepted 15 June 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.099; data-to-parameter ratio = 11.0.

The title compound,  $C_{25}H_{40}N_2O_5$ , was synthesized in 55.9% yield by condensation of *N*-methyl-L-leucine benzyl ester toluene sulfonic acid with *tert*-butoxycarbonyl-L-leucine at 273 K and its crystal structure determined. The dipeptide derivative conjugates through the amide linkage and includes two protecting groups, a *tert*-butyloxycarbonyl group at the C-tip and a benzyl group at the N-tip.

#### **Related literature**

For related literature, see: Schmidt & Potzolli (1987); McKeever & Pattenden (2003).



#### Experimental

#### Crystal data

 $\begin{array}{l} C_{25}H_{40}N_2O_5 \\ M_r = 448.59 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 9.9400 \ (12) \ \text{\AA} \\ b = 14.9395 \ (18) \ \text{\AA} \\ c = 17.876 \ (2) \ \text{\AA} \end{array}$ 

#### Data collection

| Bruker SMART 1000 CCD                |  |
|--------------------------------------|--|
| diffractometer                       |  |
| Absorption correction: multi-scan    |  |
| (SADABS; Sheldrick, 1996)            |  |
| $T_{\min} = 0.96, \ T_{\max} = 0.99$ |  |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.099$ S = 1.043277 reflections 13652 measured reflections 3277 independent reflections 2732 reflections with  $I > 2\sigma(I)$ 

298 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$ 

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by grants from the National High Technology Development Project (863 Project) (Nos. 2006 A A09Z408 GDSFC 06025194, 2005 A30503001, 2006Z3-E4041).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2061).

#### References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

McKeever, B. & Pattenden, G. (2003). Tetrahedron, 59, 2713–2727.

Schmidt, U. & Potzolli, B. (1987). Liebigs Annalen Chem. 11, 935-942.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

#### Acta Cryst. (2007). E63, o3313 [doi:10.1107/S1600536807029418]

### Benzyl 2-{[2-(tert-butoxycarbonylamino)-4-methylpentanoyl]methylamino}-4-methylpentanoate

### X.-J. Liao, W.-J. Xu, S.-H. Xu and F.-F. Dong

#### Comment

Amino acid derivatives are used generally for the synthesis of polypeptides. The title compound, (I), is a product of the reaction of two *L*-Leucine derivatives. It is a precursor for dipeptides, an intermediate product in the synthesis of polypeptides. We report here its crystal structure. The bond lengths and angles are unexceptional and are in good agreement with the corresponding values in *L*-Valine, N-[N-[(1,1-dimethylethoxy)carbonyl]-*L*-leucyl]-N-methyl-phenylmethyl ester (Schmidt *et al.*,1987)

#### Experimental

*N*-Methyl-*L*-Leucine benzyl ester Toluene Sulfonic acid (0.82 g, 2 mmol) and diisopropylethylamine (1.3 ml, 7.2 mmol) were added to dichloromethane (5 ml) at room temperature under an atmosphere of nitrogen, On dissolution, the mixture was cooled to 273 K, then 1-hydroxybenzotriazole (0.30 g, 2.2 mmol) and *tert*-Butoxycarbonyl-L–Leucine (0.46 g, 2 mmol) were added successively. After 15 minutes, *N*,*N*-dicyclohexylcarbodiimide (0.45 g, 2.2 mmol) with dichloromethane (2 ml) was added dropwise to the mixture. The reaction was stirred at 273 K for 2 h under an atmosphere of nitrogen and allowed to warm to room temperature over the course of 12 h, filtered, and the solvent removed by distillation under reduced pressure. The mixture was dissolved in EtOAc (60 ml), then was washed with 10% citric acid (40 ml), saturated NaHCO<sub>3</sub> (40 ml), and brine (40 ml), with backwashing. The combined organic extracts were dried (NaSO<sub>4</sub>) and concentrated. The crude was purified by silica-gel chromatography with acetone-hexane (1:3) to give the title compound. Colorless crystals suitable for X-ray analysis (m.p.331 K) grew over a period of one week when the solution was exposed to air.

#### Refinement

Hydrogen atoms attached to C or N atoms were located at geometrically calculated positions [0.95 (CH), 0.99 (CH<sub>2</sub>), 0.98 (CH<sub>3</sub>), 0.88 (NH)] and refined with isotropic thermal parameters  $U_{iso}(H)$  equal to 1.2 for CH<sub>2</sub>, CH, and NH, 1.5 for CH<sub>3</sub>  $U_{eq}(C \text{ atoms})$ .

#### **Figures**



Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

### Benzyl 2-{[2-(tert-butoxycarbonylamino)-4-methylpentanoyl]methylamino}- 4-methylpentanoate

 $D_{\rm x} = 1.122 \text{ Mg m}^{-3}$ Mo *K* $\alpha$  radiation

Cell parameters from 13652 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 173 (2) K

Block, colourless

 $0.50 \times 0.40 \times 0.20 \text{ mm}$ 

 $\theta = 12 - 18^{\circ}$ 

Crystal data

 $C_{25}H_{40}N_2O_5$   $M_r = 448.59$ Orthorhombic,  $P2_12_12_1$  a = 9.9400 (12) Å b = 14.9395 (18) Å c = 17.876 (2) Å  $V = 2654.6 (5) Å^3$  Z = 4 $F_{000} = 976$ 

#### Data collection

| Bruker SMART 1000 CCD<br>diffractometer                        | 3277 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2732 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.026$                  |
| T = 173(2)  K                                                  | $\theta_{\text{max}} = 27.1^{\circ}$   |
| ω scans                                                        | $\theta_{\min} = 2.3^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 12$               |
| $T_{\min} = 0.96, \ T_{\max} = 0.99$                           | $k = -17 \rightarrow 19$               |
| 13652 measured reflections                                     | $l = -22 \rightarrow 13$               |
|                                                                |                                        |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                                | $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.6524P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.099$                                              | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| <i>S</i> = 1.04                                                | $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$                                 |
| 3277 reflections                                               | $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$                              |
| 298 parameters                                                 | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983)                                                    |
| Secondary atom site location: difference Fourier map           | Flack parameter: 0 (10)                                                             |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | У             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|---------------|---------------|--------------|-------------------------------|
| 01   | 0.12084 (16)  | 0.18042 (11)  | 0.90469 (9)  | 0.0411 (4)                    |
| O2   | -0.03295 (18) | 0.07107 (12)  | 0.90142 (9)  | 0.0455 (4)                    |
| O3   | 0.28053 (14)  | 0.19630 (10)  | 1.09159 (9)  | 0.0370 (4)                    |
| O4   | 0.13473 (17)  | 0.20856 (11)  | 1.26427 (9)  | 0.0442 (4)                    |
| O5   | 0.32332 (16)  | 0.28696 (10)  | 1.29608 (8)  | 0.0359 (3)                    |
| N1   | 0.06472 (18)  | 0.16720 (12)  | 1.05938 (9)  | 0.0294 (4)                    |
| N2   | 0.20996 (18)  | 0.32424 (11)  | 1.19348 (9)  | 0.0309 (4)                    |
| H2A  | 0.2604        | 0.3726        | 1.1918       | 0.037*                        |
| C1   | 0.1431 (2)    | 0.29670 (15)  | 0.81465 (11) | 0.0356 (5)                    |
| C2   | 0.2561 (2)    | 0.29855 (17)  | 0.76974 (13) | 0.0430 (6)                    |
| H2   | 0.2889        | 0.2446        | 0.7484       | 0.052*                        |
| C3   | 0.3219 (3)    | 0.37837 (19)  | 0.75561 (15) | 0.0535 (7)                    |
| Н3   | 0.4009        | 0.3789        | 0.7257       | 0.064*                        |
| C4   | 0.2730 (3)    | 0.45650 (18)  | 0.78484 (16) | 0.0556 (7)                    |
| H4   | 0.3168        | 0.5115        | 0.7741       | 0.067*                        |
| C5   | 0.1610 (3)    | 0.45576 (18)  | 0.82960 (15) | 0.0547 (7)                    |
| Н5   | 0.1284        | 0.5102        | 0.8503       | 0.066*                        |
| C6   | 0.0957 (3)    | 0.37666 (18)  | 0.84466 (14) | 0.0455 (6)                    |
| H6   | 0.0180        | 0.3766        | 0.8756       | 0.055*                        |
| C7   | 0.0715 (3)    | 0.21184 (19)  | 0.83221 (13) | 0.0483 (6)                    |
| H7A  | -0.0268       | 0.2224        | 0.8345       | 0.058*                        |
| H7B  | 0.0896        | 0.1666        | 0.7931       | 0.058*                        |
| C8   | 0.0554 (2)    | 0.11038 (15)  | 0.93323 (12) | 0.0332 (5)                    |
| C9   | 0.1060 (2)    | 0.09157 (14)  | 1.01228 (12) | 0.0312 (5)                    |
| H9   | 0.2066        | 0.0897        | 1.0110       | 0.037*                        |
| C10  | 0.0552 (3)    | 0.00139 (15)  | 1.04099 (13) | 0.0386 (5)                    |
| H10A | -0.0443       | 0.0023        | 1.0407       | 0.046*                        |
| H10B | 0.0846        | -0.0458       | 1.0057       | 0.046*                        |
| C11  | 0.1025 (3)    | -0.02395 (16) | 1.11929 (14) | 0.0421 (6)                    |
| H11  | 0.0708        | 0.0231        | 1.1550       | 0.051*                        |
| C12  | 0.2542 (3)    | -0.0303 (2)   | 1.12513 (19) | 0.0654 (9)                    |
| H12A | 0.2794        | -0.0458       | 1.1765       | 0.098*                        |
| H12B | 0.2943        | 0.0275        | 1.1118       | 0.098*                        |
|      |               |               |              |                               |

| H12C | 0.2871      | -0.0765       | 1.0909       | 0.098*      |
|------|-------------|---------------|--------------|-------------|
| C13  | 0.0378 (3)  | -0.11314 (18) | 1.14157 (17) | 0.0578 (7)  |
| H13A | 0.0685      | -0.1603       | 1.1075       | 0.087*      |
| H13B | -0.0603     | -0.1079       | 1.1385       | 0.087*      |
| H13C | 0.0639      | -0.1283       | 1.1929       | 0.087*      |
| C14  | -0.0782 (2) | 0.19081 (16)  | 1.05734 (13) | 0.0358 (5)  |
| H14A | -0.0990     | 0.2310        | 1.0991       | 0.054*      |
| H14B | -0.1326     | 0.1363        | 1.0616       | 0.054*      |
| H14C | -0.0987     | 0.2209        | 1.0100       | 0.054*      |
| C15  | 0.1613 (2)  | 0.21621 (14)  | 1.09387 (11) | 0.0283 (4)  |
| C16  | 0.1177 (2)  | 0.30299 (14)  | 1.13349 (11) | 0.0305 (4)  |
| H16  | 0.0252      | 0.2951        | 1.1544       | 0.037*      |
| C17  | 0.1162 (2)  | 0.37809 (14)  | 1.07518 (12) | 0.0350 (5)  |
| H17A | 0.2078      | 0.3836        | 1.0539       | 0.042*      |
| H17B | 0.0554      | 0.3601        | 1.0340       | 0.042*      |
| C18  | 0.0725 (3)  | 0.46975 (15)  | 1.10310 (14) | 0.0422 (6)  |
| H18  | 0.1339      | 0.4868        | 1.1451       | 0.051*      |
| C19  | 0.0895 (4)  | 0.53893 (19)  | 1.04158 (19) | 0.0790 (11) |
| H19A | 0.0306      | 0.5239        | 0.9995       | 0.118*      |
| H19B | 0.1833      | 0.5393        | 1.0247       | 0.118*      |
| H19C | 0.0657      | 0.5982        | 1.0609       | 0.118*      |
| C20  | -0.0700 (3) | 0.4701 (2)    | 1.1334 (2)   | 0.0774 (10) |
| H20A | -0.0941     | 0.5309        | 1.1491       | 0.116*      |
| H20B | -0.0759     | 0.4296        | 1.1764       | 0.116*      |
| H20C | -0.1322     | 0.4501        | 1.0942       | 0.116*      |
| C21  | 0.2165 (2)  | 0.26697 (14)  | 1.25290 (11) | 0.0321 (5)  |
| C22  | 0.3583 (3)  | 0.22819 (16)  | 1.36006 (12) | 0.0393 (5)  |
| C23  | 0.3851 (3)  | 0.13377 (16)  | 1.33291 (15) | 0.0472 (6)  |
| H23A | 0.3015      | 0.1077        | 1.3136       | 0.071*      |
| H23B | 0.4184      | 0.0973        | 1.3746       | 0.071*      |
| H23C | 0.4526      | 0.1352        | 1.2930       | 0.071*      |
| C24  | 0.4868 (3)  | 0.2711 (2)    | 1.38889 (14) | 0.0510(7)   |
| H24A | 0.5550      | 0.2707        | 1.3493       | 0.077*      |
| H24B | 0.5200      | 0.2374        | 1.4321       | 0.077*      |
| H24C | 0.4683      | 0.3330        | 1.4038       | 0.077*      |
| C25  | 0.2492 (3)  | 0.2326 (2)    | 1.41909 (13) | 0.0526 (7)  |
| H25A | 0.2336      | 0.2951        | 1.4332       | 0.079*      |
| H25B | 0.2775      | 0.1986        | 1.4632       | 0.079*      |
| H25C | 0.1659      | 0.2069        | 1.3991       | 0.079*      |
|      |             |               |              |             |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|------------|------------|-------------|-------------|-------------|
| O1 | 0.0439 (9)  | 0.0468 (9) | 0.0326 (8) | -0.0112 (8) | -0.0077 (7) | 0.0088 (7)  |
| O2 | 0.0539 (10) | 0.0452 (9) | 0.0373 (9) | -0.0129 (8) | -0.0068 (8) | -0.0034 (8) |
| O3 | 0.0272 (7)  | 0.0380 (8) | 0.0458 (9) | 0.0041 (7)  | -0.0032 (7) | -0.0059 (7) |
| O4 | 0.0431 (9)  | 0.0488 (9) | 0.0407 (8) | -0.0132 (8) | -0.0019 (7) | 0.0063 (8)  |
| O5 | 0.0406 (8)  | 0.0360 (8) | 0.0311 (7) | -0.0047 (7) | -0.0068 (7) | 0.0043 (6)  |

| N1  | 0.0287 (9)  | 0.0310 (9)  | 0.0284 (9)  | 0.0014 (7)   | -0.0005 (7)  | -0.0022 (7)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N2  | 0.0367 (10) | 0.0289 (8)  | 0.0271 (8)  | -0.0026 (8)  | -0.0032 (8)  | -0.0026 (7)  |
| C1  | 0.0341 (11) | 0.0461 (13) | 0.0267 (10) | -0.0002 (10) | -0.0056 (9)  | 0.0064 (10)  |
| C2  | 0.0451 (14) | 0.0469 (13) | 0.0369 (12) | 0.0114 (12)  | 0.0053 (10)  | 0.0070 (11)  |
| C3  | 0.0443 (14) | 0.0694 (18) | 0.0467 (14) | -0.0038 (14) | 0.0087 (12)  | 0.0197 (14)  |
| C4  | 0.0688 (18) | 0.0471 (14) | 0.0509 (15) | -0.0118 (14) | -0.0053 (15) | 0.0139 (12)  |
| C5  | 0.075 (2)   | 0.0459 (14) | 0.0431 (14) | 0.0111 (14)  | -0.0044 (15) | 0.0000 (12)  |
| C6  | 0.0387 (13) | 0.0632 (16) | 0.0347 (12) | 0.0113 (12)  | 0.0022 (10)  | 0.0015 (12)  |
| C7  | 0.0532 (15) | 0.0568 (15) | 0.0347 (12) | -0.0120 (13) | -0.0110 (11) | 0.0090 (12)  |
| C8  | 0.0344 (11) | 0.0342 (11) | 0.0311 (11) | -0.0001 (10) | 0.0021 (9)   | -0.0032 (9)  |
| C9  | 0.0326 (11) | 0.0301 (10) | 0.0308 (11) | 0.0003 (9)   | -0.0010 (9)  | -0.0019 (9)  |
| C10 | 0.0446 (13) | 0.0311 (11) | 0.0402 (12) | -0.0009 (10) | -0.0019 (11) | 0.0005 (10)  |
| C11 | 0.0517 (15) | 0.0335 (11) | 0.0410 (13) | 0.0019 (11)  | -0.0005 (11) | 0.0062 (10)  |
| C12 | 0.0542 (17) | 0.0611 (18) | 0.081 (2)   | 0.0023 (15)  | -0.0153 (16) | 0.0268 (17)  |
| C13 | 0.0694 (18) | 0.0442 (14) | 0.0598 (17) | -0.0029 (14) | 0.0034 (15)  | 0.0181 (13)  |
| C14 | 0.0291 (11) | 0.0427 (12) | 0.0356 (11) | -0.0001 (10) | -0.0001 (9)  | -0.0047 (10) |
| C15 | 0.0287 (10) | 0.0298 (10) | 0.0263 (9)  | 0.0005 (9)   | -0.0009 (8)  | 0.0021 (8)   |
| C16 | 0.0296 (10) | 0.0344 (11) | 0.0277 (10) | 0.0023 (9)   | -0.0031 (8)  | -0.0029 (9)  |
| C17 | 0.0430 (12) | 0.0327 (11) | 0.0291 (11) | 0.0056 (10)  | -0.0020 (9)  | -0.0006 (9)  |
| C18 | 0.0509 (14) | 0.0367 (12) | 0.0391 (12) | 0.0109 (11)  | -0.0098 (11) | -0.0039 (10) |
| C19 | 0.122 (3)   | 0.0391 (15) | 0.076 (2)   | 0.0218 (18)  | 0.007 (2)    | 0.0129 (15)  |
| C20 | 0.070 (2)   | 0.0630 (19) | 0.099 (3)   | 0.0282 (18)  | 0.015 (2)    | -0.0043 (19) |
| C21 | 0.0346 (11) | 0.0328 (10) | 0.0289 (10) | -0.0005 (10) | 0.0000 (9)   | -0.0040 (9)  |
| C22 | 0.0455 (13) | 0.0452 (13) | 0.0273 (10) | 0.0016 (11)  | -0.0029 (10) | 0.0074 (10)  |
| C23 | 0.0542 (15) | 0.0419 (13) | 0.0455 (14) | 0.0040 (12)  | 0.0051 (12)  | 0.0097 (11)  |
| C24 | 0.0533 (15) | 0.0618 (16) | 0.0379 (12) | 0.0003 (13)  | -0.0126 (12) | 0.0063 (12)  |
| C25 | 0.0579 (16) | 0.0675 (17) | 0.0323 (12) | 0.0099 (14)  | 0.0044 (11)  | 0.0084 (12)  |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| O1—C8  | 1.333 (3) | C12—H12A | 0.9800    |
|--------|-----------|----------|-----------|
| O1—C7  | 1.463 (3) | C12—H12B | 0.9800    |
| O2—C8  | 1.200 (3) | C12—H12C | 0.9800    |
| O3—C15 | 1.223 (2) | C13—H13A | 0.9800    |
| O4—C21 | 1.210 (3) | C13—H13B | 0.9800    |
| O5—C21 | 1.346 (3) | C13—H13C | 0.9800    |
| O5—C22 | 1.483 (3) | C14—H14A | 0.9800    |
| N1—C15 | 1.356 (3) | C14—H14B | 0.9800    |
| N1-C14 | 1.464 (3) | C14—H14C | 0.9800    |
| N1—C9  | 1.468 (3) | C15—C16  | 1.539 (3) |
| N2-C21 | 1.365 (3) | C16—C17  | 1.531 (3) |
| N2—C16 | 1.446 (3) | C16—H16  | 1.0000    |
| N2—H2A | 0.8800    | C17—C18  | 1.521 (3) |
| C1—C2  | 1.381 (3) | C17—H17A | 0.9900    |
| C1—C6  | 1.392 (3) | C17—H17B | 0.9900    |
| C1—C7  | 1.488 (3) | C18—C20  | 1.517 (4) |
| C2—C3  | 1.383 (4) | C18—C19  | 1.519 (4) |
| С2—Н2  | 0.9500    | C18—H18  | 1.0000    |
| C3—C4  | 1.368 (4) | C19—H19A | 0.9800    |
|        |           |          |           |

| С3—Н3      | 0.9500      | C19—H19B      | 0.9800      |
|------------|-------------|---------------|-------------|
| C4—C5      | 1.370 (4)   | С19—Н19С      | 0.9800      |
| C4—H4      | 0.9500      | C20—H20A      | 0.9800      |
| C5—C6      | 1.375 (4)   | C20—H20B      | 0.9800      |
| С5—Н5      | 0.9500      | С20—Н20С      | 0.9800      |
| С6—Н6      | 0.9500      | C22—C25       | 1.514 (3)   |
| C7—H7A     | 0.9900      | C22—C23       | 1.515 (3)   |
| С7—Н7В     | 0.9900      | C22—C24       | 1.519 (4)   |
| C8—C9      | 1.526 (3)   | C23—H23A      | 0.9800      |
| C9—C10     | 1.528 (3)   | C23—H23B      | 0.9800      |
| С9—Н9      | 1.0000      | С23—Н23С      | 0.9800      |
| C10-C11    | 1.524 (3)   | C24—H24A      | 0.9800      |
| C10—H10A   | 0.9900      | C24—H24B      | 0.9800      |
| C10—H10B   | 0.9900      | C24—H24C      | 0.9800      |
| C11—C12    | 1.515 (4)   | C25—H25A      | 0.9800      |
| C11—C13    | 1.532 (3)   | С25—Н25В      | 0.9800      |
| С11—Н11    | 1.0000      | C25—H25C      | 0.9800      |
| C8—O1—C7   | 115.28 (18) | N1-C14-H14B   | 109.5       |
| C21—O5—C22 | 119.72 (17) | H14A—C14—H14B | 109.5       |
| C15—N1—C14 | 124.62 (18) | N1—C14—H14C   | 109.5       |
| C15—N1—C9  | 118.60 (18) | H14A—C14—H14C | 109.5       |
| C14—N1—C9  | 116.28 (18) | H14B—C14—H14C | 109.5       |
| C21—N2—C16 | 118.01 (17) | O3-C15-N1     | 122.7 (2)   |
| C21—N2—H2A | 121.0       | O3—C15—C16    | 119.51 (18) |
| C16—N2—H2A | 121.0       | N1—C15—C16    | 117.73 (18) |
| C2—C1—C6   | 118.8 (2)   | N2-C16-C17    | 110.50 (17) |
| C2—C1—C7   | 121.9 (2)   | N2—C16—C15    | 110.36 (16) |
| C6—C1—C7   | 119.2 (2)   | C17—C16—C15   | 107.86 (16) |
| C1—C2—C3   | 120.5 (2)   | N2—C16—H16    | 109.4       |
| С1—С2—Н2   | 119.7       | С17—С16—Н16   | 109.4       |
| С3—С2—Н2   | 119.7       | C15-C16-H16   | 109.4       |
| C4—C3—C2   | 119.8 (2)   | C18—C17—C16   | 116.04 (18) |
| С4—С3—Н3   | 120.1       | C18—C17—H17A  | 108.3       |
| С2—С3—Н3   | 120.1       | С16—С17—Н17А  | 108.3       |
| C3—C4—C5   | 120.3 (3)   | C18—C17—H17B  | 108.3       |
| C3—C4—H4   | 119.8       | С16—С17—Н17В  | 108.3       |
| C5—C4—H4   | 119.8       | H17A—C17—H17B | 107.4       |
| C4—C5—C6   | 120.3 (3)   | C20—C18—C19   | 111.1 (3)   |
| C4—C5—H5   | 119.8       | C20-C18-C17   | 112.8 (2)   |
| С6—С5—Н5   | 119.8       | C19—C18—C17   | 110.1 (2)   |
| C5—C6—C1   | 120.1 (2)   | C20—C18—H18   | 107.5       |
| С5—С6—Н6   | 119.9       | C19—C18—H18   | 107.5       |
| C1—C6—H6   | 119.9       | C17—C18—H18   | 107.5       |
| O1—C7—C1   | 107.45 (19) | С18—С19—Н19А  | 109.5       |
| O1—C7—H7A  | 110.2       | C18—C19—H19B  | 109.5       |
| С1—С7—Н7А  | 110.2       | H19A—C19—H19B | 109.5       |
| O1—C7—H7B  | 110.2       | C18—C19—H19C  | 109.5       |
| С1—С7—Н7В  | 110.2       | H19A—C19—H19C | 109.5       |
| H7A—C7—H7B | 108.5       | H19B—C19—H19C | 109.5       |

| O2—C8—O1      | 124.0 (2)   | C18—C20—H20A  | 109.5       |
|---------------|-------------|---------------|-------------|
| O2—C8—C9      | 126.2 (2)   | C18—C20—H20B  | 109.5       |
| O1—C8—C9      | 109.76 (18) | H20A—C20—H20B | 109.5       |
| N1—C9—C8      | 107.28 (17) | C18-C20-H20C  | 109.5       |
| N1—C9—C10     | 113.18 (18) | H20A—C20—H20C | 109.5       |
| C8—C9—C10     | 111.39 (18) | H20B-C20-H20C | 109.5       |
| N1—C9—H9      | 108.3       | O4—C21—O5     | 126.4 (2)   |
| С8—С9—Н9      | 108.3       | O4—C21—N2     | 123.4 (2)   |
| С10—С9—Н9     | 108.3       | O5—C21—N2     | 110.16 (18) |
| C11—C10—C9    | 115.2 (2)   | O5—C22—C25    | 110.11 (19) |
| C11-C10-H10A  | 108.5       | O5—C22—C23    | 110.19 (18) |
| C9—C10—H10A   | 108.5       | C25—C22—C23   | 112.9 (2)   |
| C11-C10-H10B  | 108.5       | O5—C22—C24    | 102.04 (19) |
| C9—C10—H10B   | 108.5       | C25—C22—C24   | 110.3 (2)   |
| H10A-C10-H10B | 107.5       | C23—C22—C24   | 110.7 (2)   |
| C12—C11—C10   | 112.7 (2)   | C22—C23—H23A  | 109.5       |
| C12—C11—C13   | 110.2 (2)   | C22—C23—H23B  | 109.5       |
| C10-C11-C13   | 109.0 (2)   | H23A—C23—H23B | 109.5       |
| C12—C11—H11   | 108.3       | С22—С23—Н23С  | 109.5       |
| C10-C11-H11   | 108.3       | H23A—C23—H23C | 109.5       |
| C13—C11—H11   | 108.3       | H23B—C23—H23C | 109.5       |
| C11—C12—H12A  | 109.5       | C22—C24—H24A  | 109.5       |
| C11—C12—H12B  | 109.5       | C22—C24—H24B  | 109.5       |
| H12A—C12—H12B | 109.5       | H24A—C24—H24B | 109.5       |
| C11—C12—H12C  | 109.5       | C22—C24—H24C  | 109.5       |
| H12A—C12—H12C | 109.5       | H24A—C24—H24C | 109.5       |
| H12B—C12—H12C | 109.5       | H24B—C24—H24C | 109.5       |
| C11—C13—H13A  | 109.5       | C22—C25—H25A  | 109.5       |
| С11—С13—Н13В  | 109.5       | С22—С25—Н25В  | 109.5       |
| H13A—C13—H13B | 109.5       | H25A—C25—H25B | 109.5       |
| C11—C13—H13C  | 109.5       | C22—C25—H25C  | 109.5       |
| H13A—C13—H13C | 109.5       | H25A—C25—H25C | 109.5       |
| H13B—C13—H13C | 109.5       | H25B—C25—H25C | 109.5       |
| N1—C14—H14A   | 109.5       |               |             |



